

Biotechnology and Energy Conservation

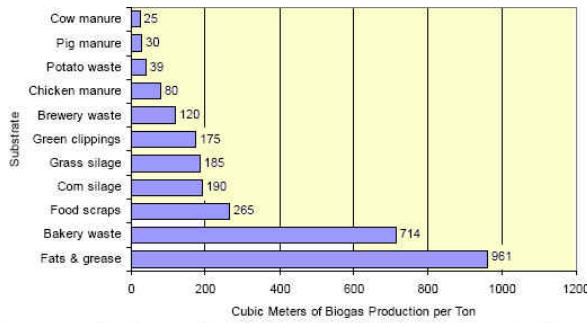
Prof. Dr.oec.troph. Ir. Krishna Purnawan Candra, M.S.
Program Magister Ilmu Lingkungan Universitas Mulawarman

14th Lecture Biogas and Biohydrogen

The Aim:

- Students can explain the method of biogas and biohydrogen production
- Students can describe source of raw material and agents (microbes) for producing biogas and biohydrogen

Biogas


- ▶ Biogas is gas produced biologically (fermentation under anaerobic microbes) from bio-organic substances.
- ▶ Average concentration of substances composition of raw biogas:

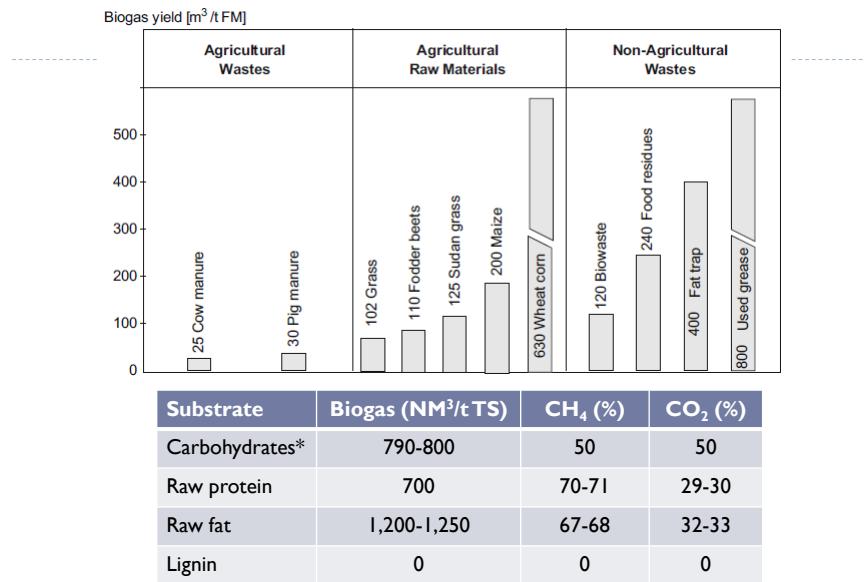
Compositions	Concentration
Methane (CH ₄)	50-57%
Carbon dioxide (CO ₂)	25-45 %-v
Water (H ₂ O)	2-7 %-v, (20-40°C)
Hydrogen sulfide (H ₂ S)	20-20,000 ppm
Nitrogen (N ₂)	< 2 %-v
Oxygen (O ₂)	< 2 %-v
Hydrogen (H ₂)	< 1 %-v

3

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Influence of substrates type on production level of biogas

Source: Data derived from www.biogas-energy.com. © 2007 Biogas Energy, Inc., translated from: Basisdaten Biogas Deutschland, März 2005.; Fachagentur Nachwachsende Rohstoffe e.V.

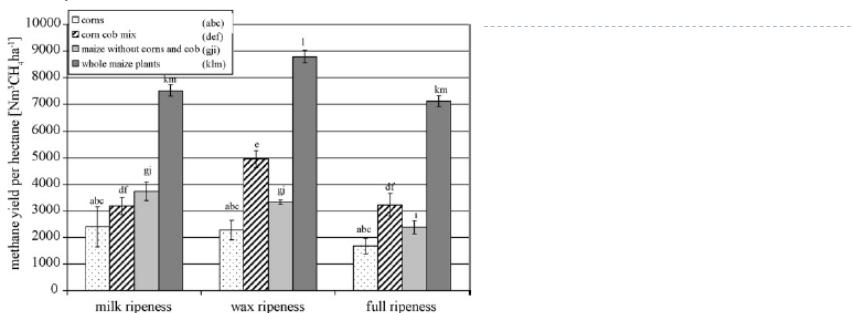

Gross crop yield and biogas potential of different crops (Weiland, 2010)

Crop	Crop yield (t FM/ha)	Biogas yield (Nm ³ /(t VS))	Methane content (%)
Sugar beet	40–70	730–770	53
Fodder beet	80–120	750–800	53
Maize	40–60	560–650	52
Com cob mix	10–15	660–680	53
Wheat	30–50	650–700	54
Triticale	28–33	590–620	54
Sorghum	40–80	520–580	55
Grass	22–31	530–600	54
Red clover	17–25	530–620	56
Sunflower	31–42	420–540	55
Wheat grain	6–10	700–750	53
Rye grain	4–7	560–780	53

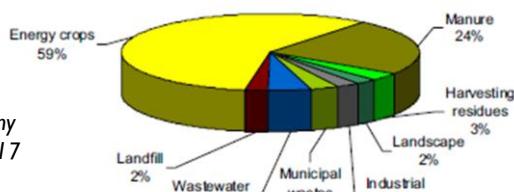
4

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Maximal biogas yield and theoretical methane contents (Baserga, 1998; Weiland, 2010)

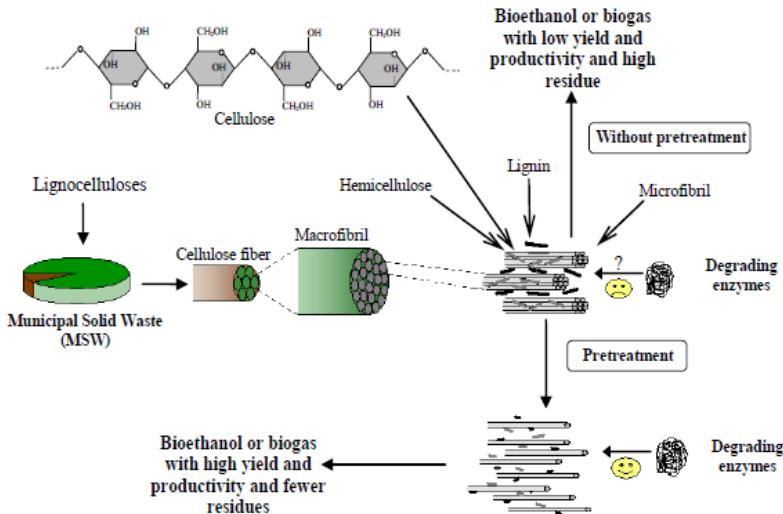


*) Only polymers from hexose, not inulin and single hexose


5

Prof.Dr.Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

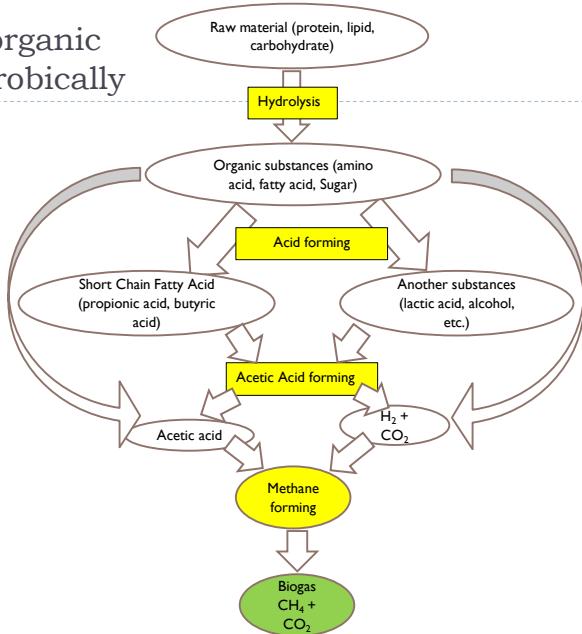
Influence of harvesting technology on biogas production (Amon et al., 2006)


Usable biogas potential in Germany in 2008. Total energy potential : 417 PJ/a (Weiland, 2010)

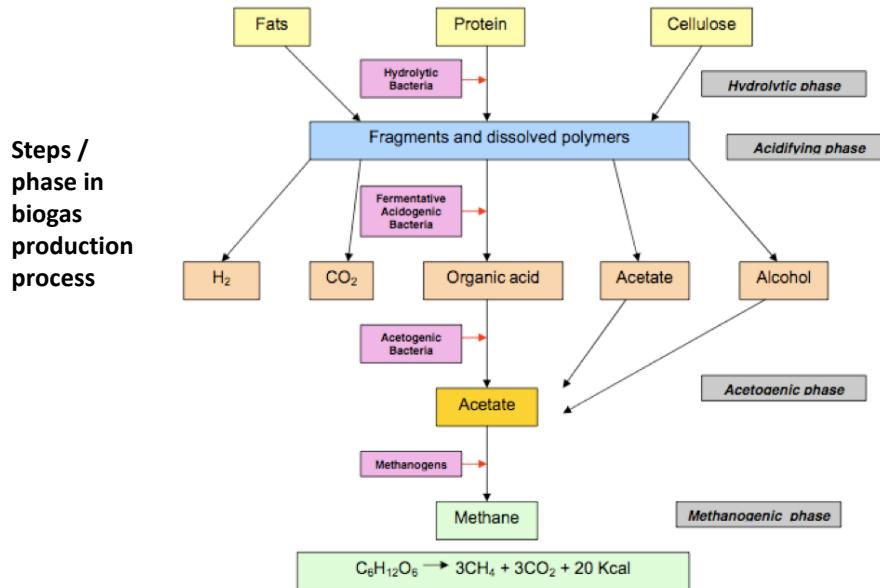
6

Prof.Dr.Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Influence of pre-treatment on bioethanol/biogas production
(Taherzadeh and Karimi, 2008)



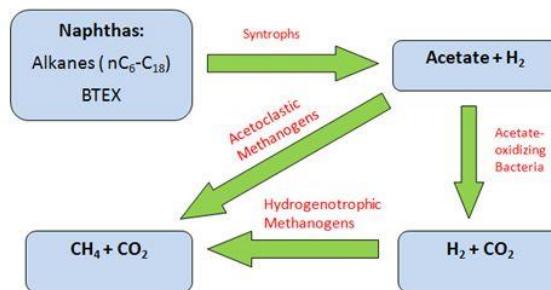
▶ 7 Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014


Digesting of bio-organic substances anaerobically

Digesting process is in liquid state fermentation (LSF) under some requirements:

- ▶ **Oxygen**
- ▶ **Temperature**
- ▶ **pH**
- ▶ **Substrate availability**
- ▶ **Inhibitor substances**

▶ 8 Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014



07/12/2014 Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University

9

Microbes involved in each step of biogas production

No	Type of microbes	Microbes
1	Hydrolysis	<i>Bacterioides, Clostridia, Bifidobacteria</i>
2	Fermentative acidogenic	<i>Streptococci, Enterobacteriaceae</i> (facultative anaerobic)
3	Acetogenic	<i>Acetobacterium woodii, Clostridium aceticum</i>
4	Methanogenic	<i>Methanosarcina barkeri, Methanomicrobium mazaei, Methanotrix soehngenii</i> (strictly anaerobic)

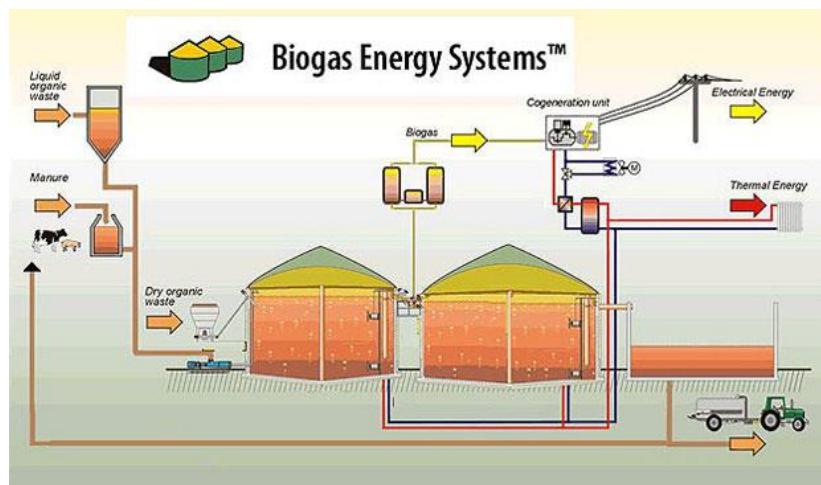
07/12/2014

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University

10

Digesting of bio-organic substances anaerobically

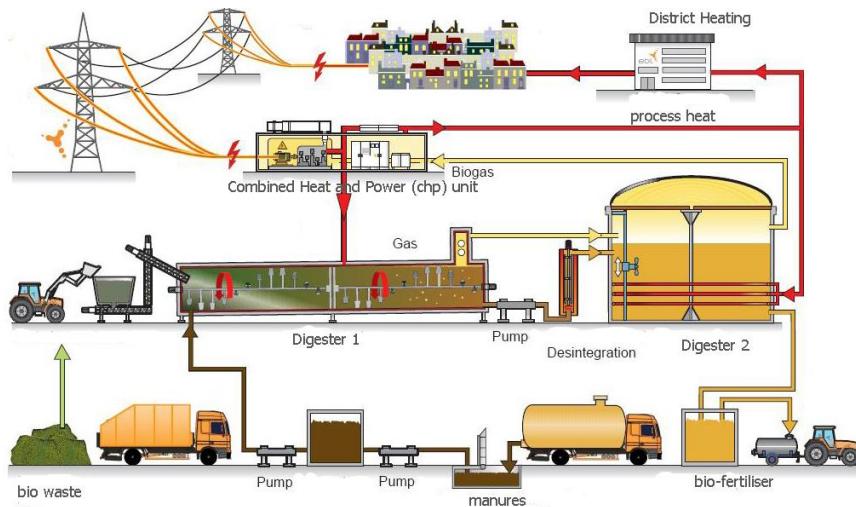
Digesting process is in liquid state fermentation (LSF) under some requirements:


- ▶ **Oxygen** (the oxygen should be very low or in anaerobic condition).
- ▶ **Temperature** (most of methane bacteria is mesophyle, 32-42°C)
- ▶ **pH-value** (hydrolysis and acid forming process at low pH, 4.5-6.3, while acetic acid and methane forming process at neutral pH, 6.8-7.5)
- ▶ **Substrate availability** (C:N:P:S condition is 600:15:5:1)
- ▶ **Inhibitor substances** (some inhibitor substances during fermentation of methane production)

Inhibitors	Concentration
Sodium	6-30 g/L (for some adapt bacteria culture until 60 g/L)
Potassium	Starting at 3 g/L
Calcium	Starting at 2.8 g/L CaCl_2
Magnesium	Starting at 2.4 g/L MgCl_2
Ammonium	2.7-10 g/L
Ammonia	Starting at 0.15 g/L
Sulfur	Starting at 50 mg/L H_2S , 100 mg/L S_2- , 160 mg/L Na_2S (for some adapt bacteria culture until 600 mg/L Na_2S and 1,000 mg/L H_2S)
Heavy metals	As free ions, starting at 10 mg/L Ni, 40 mg/L Cu, 130 mg/L Cr, 340 mg/L Pb, 400 mg/L Zn As carbonate form, starting at 160 mg/L Zn, 170 mg/L Cu, 180 mg/L Cd, 530 mg/L Cr^{3+} , 1,750 mg/L Fe. Heavy metals can be by sulfite sedimented and neutralized
Branch fatty acid	Iso-butyric acid: starting at 50 mg/L

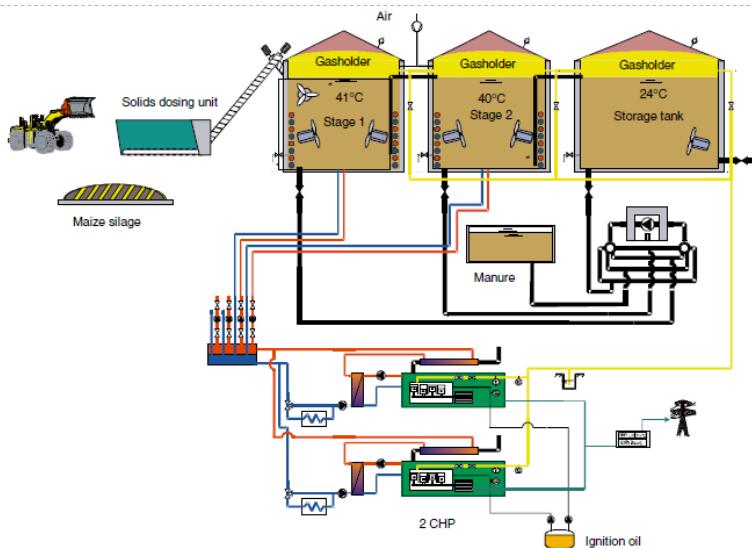
11

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014


Flow-storage process of biogas

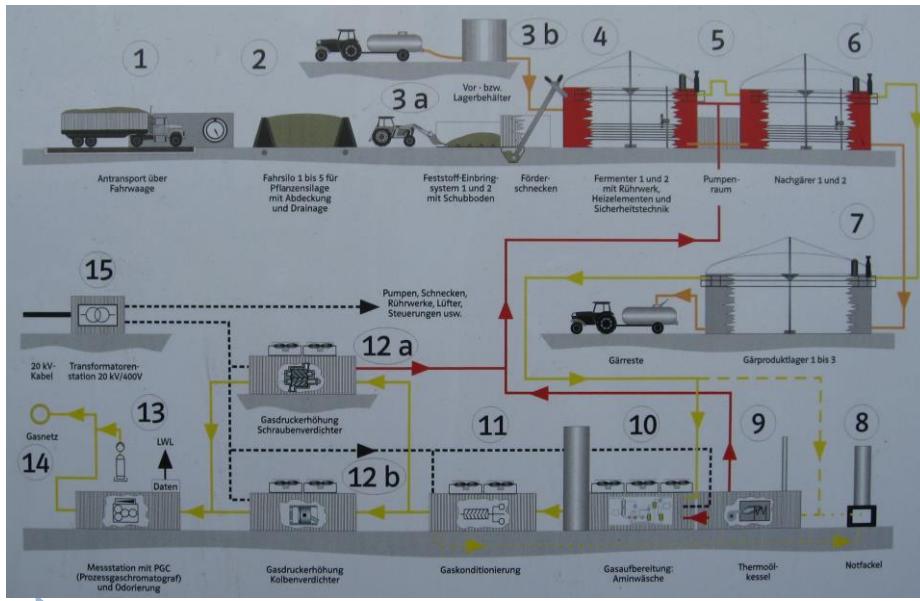
12

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014


Flow-storage process of biogas

13

Prof.Dr.Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

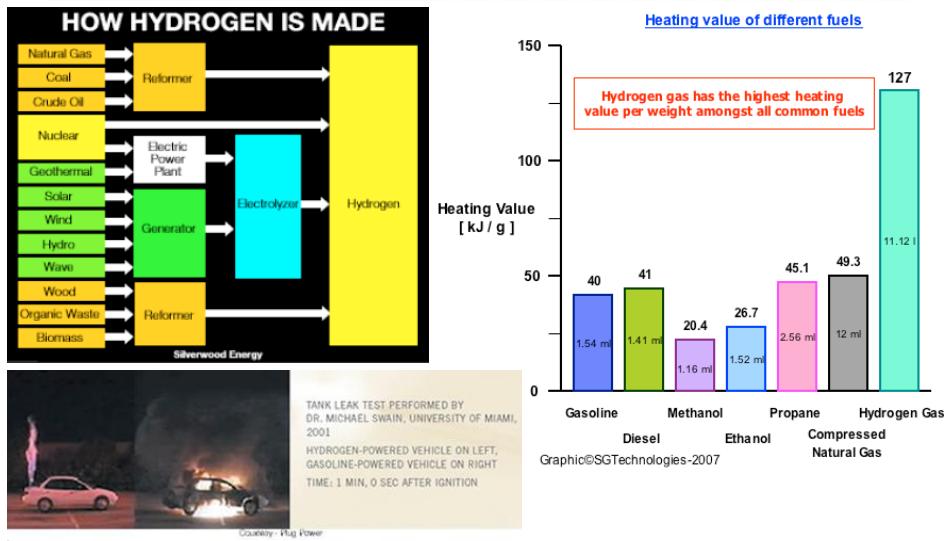

Typical two-stage agricultural biogas plant (Weiland, 2010)

14

Prof.Dr.Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Flow-storage process of biogas at e-on company near Hannover, Germany

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014


Biogas Plant

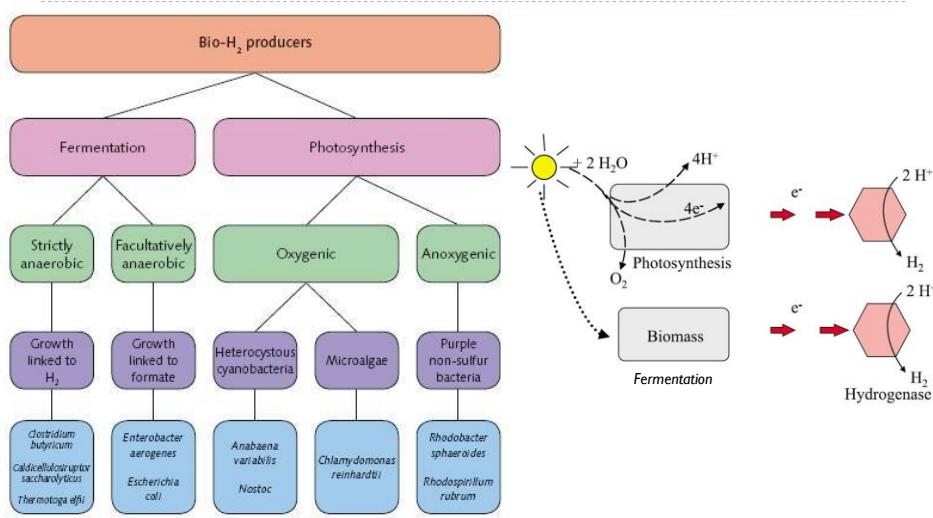
16

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Hydrogen characteristics

17

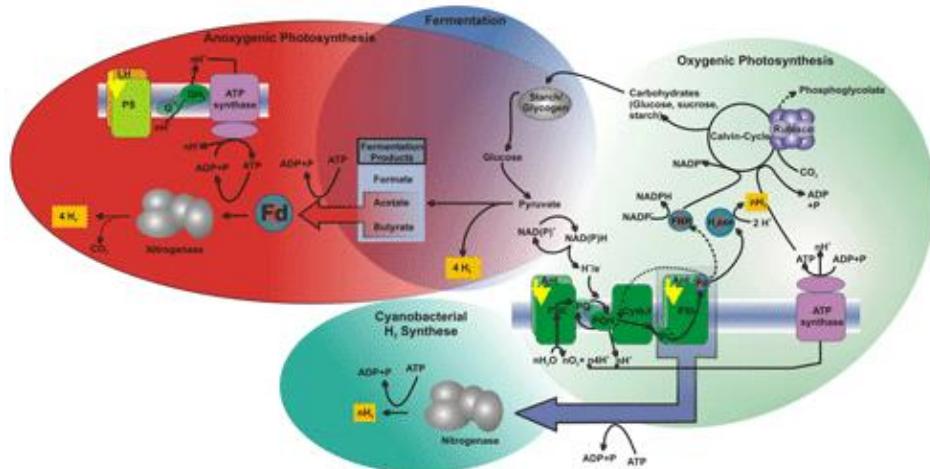
Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014


Hydrogen characteristics

- ▶ Clean energy source, producing water as its only by-product when it burns.
- ▶ Can be produced from renewable raw materials (biologically) such as organic wastes (*compost, anaerobic digester sludge, food and starch-based wastes, cellulosic materials, dairy wastes, palm oil mill effluent, and glycerol*), called biohydrogen.
- ▶ Biohydrogen process not only generates environmentally clean energy - hydrogen, but also stabilizes the waste.
- ▶ The biohydrogen fermentation technology could enhance the economic viability of many processes utilizing hydrogen as a fuel source or as a raw material.

18

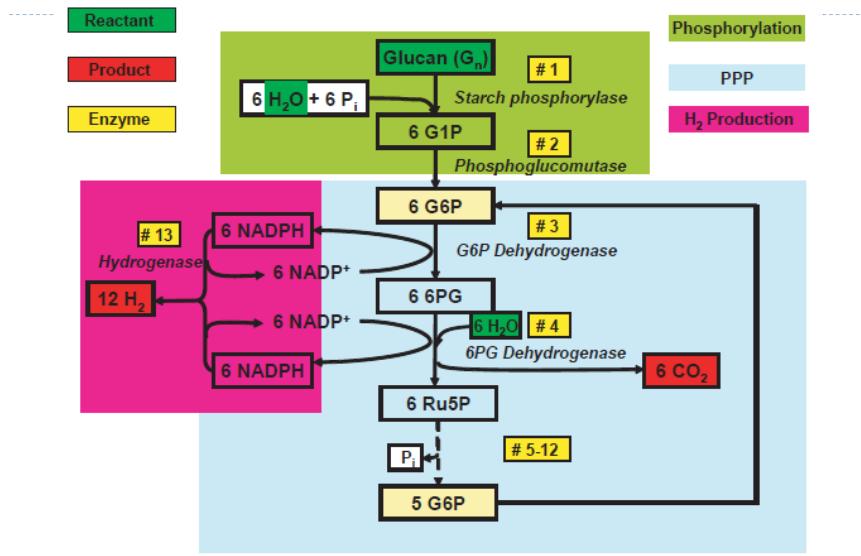
Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014


Biohydrogen production method

19

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Biohydrogen metabolic pathway



The production of H₂ is one of the specific mechanisms to dispose excess electrons through the activity of hydrogenase enzymes present in H₂ producing microorganisms. Hydrogenases have various physiological roles

20

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

The synthetic metabolic pathway of polysaccharide and water to hydrogen and carbon dioxide

21

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Terms of Biohydrogen

- ▶ Biohydrogen, biologically produced hydrogen from renewable sources (biomass, water, organic wastes).
- ▶ Biohydrogen production:
 - ▶ Photosynthetic (cyanobacteria and algae)
 - ▶ Fermentative
 - ▶ Photofermentation (purple bacteria; / photosynthetic bacteria)
 - ▶ Dark fermentation (fermentation without light)
- ▶ They may also have different localization in the cell and different subunit composition.
- ▶ Three main classes:
 - ▶ iron-only ([FeFe] hydrogenases)
 - ▶ nickel-iron ([NiFe] hydrogenases)
 - ▶ "iron-sulphur-cluster-free" hydrogenases (contain no redox active metal ion in their active center).

22

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Biohydrogen production by dark fermentation

- ▶ **Classified into two categories:**
 - ▶ Facultative anaerobes (enteric bacteria, e.g. *Escherichia coli*, *Enterobacter*, and *Citrobacter*)
 - ▶ Strict anaerobes (clostridia, methylotrophic methanogens, and rumen bacteria). The extreme thermophile *Caldicellulosiruptor saccharolyticus* is related to clostridia.
- ▶ The genus *Clostridium* has been widely studied for H₂ production, capable of using various organic substrates such as proteins, starch, animal manure and sewage sludge. Some clostridia are both proteolytic and saccharolytic.
- ▶ The fermentative route is a promising method for biohydrogen production due to its high rate of the H₂ evolving [FeFe] hydrogenase and the versatility of the substrates used.

▶ 23

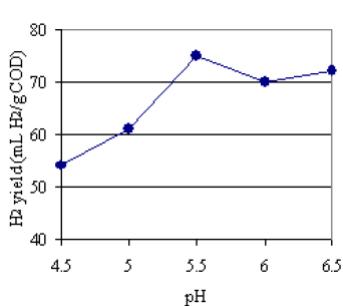
Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Optimization of biohydrogen production of *C. butyricum* EB6

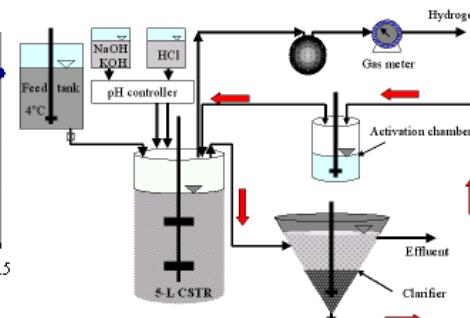
- ▶ Using synthetic medium was done on pH, glucose and iron concentration
- ▶ Optimum production achieved at
 - ▶ pH 5.6,
 - ▶ 15.7 g/L glucose and
 - ▶ 0.39 g/L FeSO₄
- ▶ Yield of biohydrogen at 2.2 mol H₂/mol glucose

▶ 24

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014


Improving genetic characteristic of microbe expresse hydrogenase

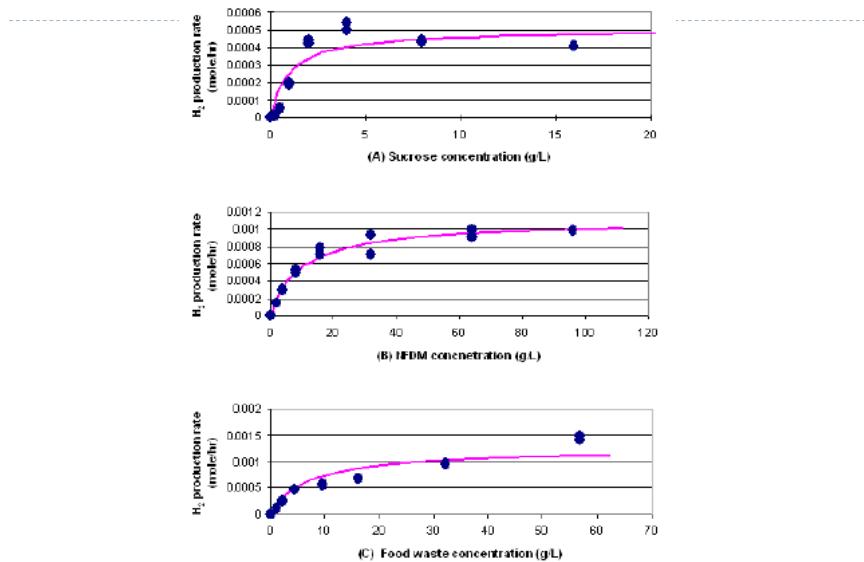
- ▶ **[Fe]-hydrogenase (*hydA*) gene of *C. butyricum* EB6**
 - ▶ open reading frames of 1725 bp
 - ▶ encodes *hydA* of 574 amino acids
 - ▶ approximate size of 64 kDaltons
 - ▶ The *hydA* of *C. butyricum* was found 80.5% similar to *hydA* of *C. acetobutylicum* P262 and closely similar to *Clostridia* hydrogenase.
 - ▶ A *hydA*-expressing recombinant EB6 was successfully obtained with higher biohydrogen production of 4.2-4.8 L-H₂/ L-medium compared to the wild type


▶ 25

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

Hydrogen production

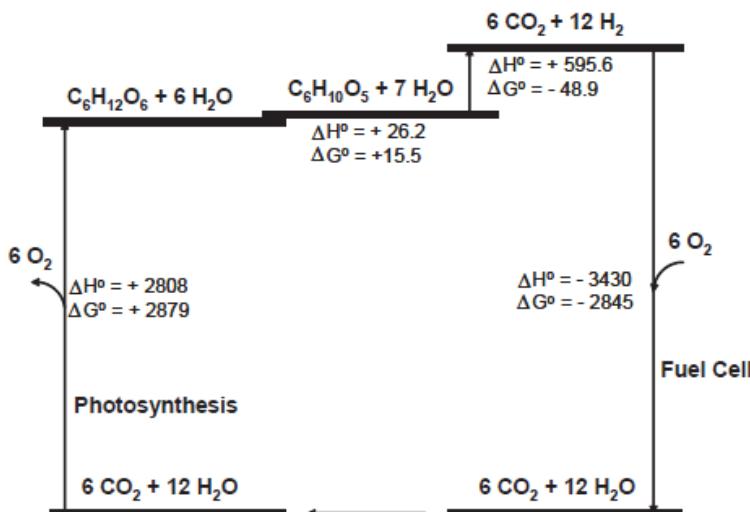
Effect of pH on hydrogen production in batch studies



Experimental setup of continuous bioreactor

▶ 26

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014


Biohydrogen production rates at various initial substrate concentration
 (A) Sucrose; (B) Non-Fat Dry Milk; (C) Food Waste

27

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

An energy diagram showing the standard enthalpy and free energy changes in kJ/mol for reaction in a renewable energy cycle operating among H₂O, CO₂, glucose, and starch

28

Prof. Dr. Krishna P Candra, Study Program of Environmental Science, Mulawarman University 07/12/2014

The enzymes used for hydrogen production from starch and water, and reaction mechanism, sources, and amounts use in the reaction

E.C.	Enzyme Name	Reaction	Vendor	Origin	Unit
24.1.1	glycogen phosphorylase	$(C_6H_{10}O_5)_n + P_i + H_2O \rightarrow (C_6H_{10}O_5)_{n-1} + \text{glucose-1-P}$	Sigma	rabbit muscle	10
54.2.2	phosphoglucomutase	$G-1-P \rightarrow G-6-P$	Sigma	rabbit muscle	10
1.1.149	glucose-6-phosphate dehydrogenase	$G-6-P + NADP^+ \rightarrow 6\text{-phosphogluconate} + NADPH$	Sigma	<i>S. cerevisiae</i>	1
1.1.144	6-phosphogluconic dehydrogenase	$6\text{-phosphogluconate} + H_2O + NADP^+ \rightarrow \text{ribulose-5-phosphate} + NADPH + CO_2$	Sigma	<i>S. cerevisiae</i>	1
53.1.6	ribose 5-phosphate isomerase	$\text{ribulose-5-phosphate} \rightarrow \text{ribose-5-phosphate}$	Sigma	spinach	1
53.1.3	ribulose-5-phosphate 3-epimerase	$\text{ribulose-5-phosphate} \rightarrow \text{xylulose-5-phosphate}$	Sigma	<i>S. cerevisiae</i>	1
22.1.1	transketolase	$\text{xylulose-5-phosphate} + \text{ribose-5-phosphate} \rightarrow \text{sedoheptulose-7-phosphate} + \text{glyceraldehyde-3-phosphate}$	Sigma	<i>E. coli</i>	1
		$\text{xylulose-5-phosphate} + \text{erythrose-4-phosphate} \rightarrow \text{fructose-6-phosphate} + \text{glyceraldehyde-3-phosphate}$			
22.1.2	transaldolase	$\text{sedoheptulose-7-phosphate} + \text{glyceraldehyde-3-phosphate} \rightarrow \text{fructose-6-phosphate} + \text{erythrose-4-phosphate}$	Sigma	<i>S. cerevisiae</i>	1
53.1.1	triose-phosphate isomerase	$\text{glyceraldehyde-3-phosphate} \rightarrow \text{dihydroxacetone phosphate}$	Sigma	rabbit muscle	1
4.1.2.13	aldolase	$\text{glyceraldehyde-3-phosphate} + \text{dihydroxacetone phosphate} \rightarrow \text{fructose-1,6-bisphosphate}$	Sigma	rabbit muscle	1
3.1.3.11	fructose-1,6-bisphosphate	$\text{fructose-1,6-bisphosphate} + H_2O \rightarrow \text{fructose-6-phosphate} + Pi$	[41]	<i>E. coli</i>	1
53.1.9	phosphogluucose isomerase	$\text{fructose-6-phosphate} \rightarrow \text{glucose-6-P}$	Sigma	<i>S. cerevisiae</i>	1
1.12.1.3	<i>P. furiosus</i> hydrogenase I	$NADPH + H^+ \rightarrow NADP^+ + H_2$	[22.42]	<i>P. furiosus</i>	~70